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Two-dimensional reattaching jet flows including the 
effects of curvature on entrainment 

By R. A. SAWYER 
Engineering Department, Cambridge University* 

(Received 3 May 1963) 

The analysis given previously for predicting the average pressure and length of 
the region of recirculating flow enclosed by a low-speed turbulent jet, issuing 
parallel to a flat plate, has been modified to take into account the different rates 
of entrainment by the two edges of the curved jet, the initial mixing region and the 
pressure forces near reattachment. There is improved correlation between theory 
and experiment. The analysis has been applied to the flow due to a jet emerging 
a t  an angle to a flat plate, and gives good prediction of the length and average 
pressure of the recirculation region for a particular value of an entrainment- 
ratio parameter. 

Curvature has a considerable effect on the rates of entrainment, but a first- 
order mixing-length theory indicates that this need not necessarily be accom- 
panied by a marked deviation in jet velocity profile from that of a plane jet. 

1. Introduction 
In  experiments previously reported (Sawyer 1960) on the flow due to a two- 

dimensional turbulent jet of incompressible fluid issuing parallel to a flat plate, 
i t  was found that the measured velocity profiles of the jet as it curved towards 
the plate exhibited no obvious asymmetry. This was in apparent disagreement 
with expectations based on the arguments first put forward by Prandtl (1929), 
which indicate that there should be an enhanced mixing in the outer portion of a 
curved jet and a reduced mixing in the inner portion due to the influence of centri- 
fugal forces on the parcels of fluid which transfer momentum from layer to layer. 
The experiments of Wilcken (1930), Wattendorf (1935) and others on the effects 
of curvature on turbulent boundary layers and fully developed channel flow, as 
well as Newman’s (1961) measurements of wall jets blowing round circular 
cylinders, showed that curvature has a considerable effect on the development of 
turbulent shear layers. In  each of these configurations the effect was in agree- 
ment with Prandtl’s momentum-transfer arguments. 

The author has measured the growth of two-dimensional turbulent wall jets 
blowing round surfaces constructed to maintain the ratio of jet thickness b 
to surface radius of curvature R at a constant value along the length of the jet 
(Sawyer 1962). For blR of the order of 0.05, the rate of spread of the curved jet 
was found to be increased or decreased by approximately 50 yo as compared with 
that of a plane wall jet, for a convex or concave surface, respectively. 
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In  view of these considerations, it  was somewhat surprising to discover that the 
velocity profiles of the curved jet which was free to entrain fluid from both sides 
(i.e. a jet across which there was a pressure difference) were nearly symmetrical, 
even though the corresponding value of b/R was of the order of 0.06 for both sides 
of the jet. It was also found that the total rate of spread of the jet was almost 
identical to that of a plane jet. It appeared, therefore, that there must be a flow 
of fluid across the jet centre-line for the observed symmetry of the velocity 
profiles to be compatible with quite different entrainment rates at the two sides 
of the jet. 

For the case of a two-dimensional jet issuing parallel to a flat plate, a simple 
model of the flow was proposed (Sawyer 1960) following work by Dodds (1960), 
in which the mean velocity of the jet was assumed to be given by ulU = sech2 q,  
where 7 = C T Y / X  and where X, Y are co-ordinates measuring distances along 
and perpendicular to the jet centre-line. This is the solution obtained by Gortler 
(1942) on the basis of constant eddy viscosity across the jet. Reichardt (1942) 
found that the empirical constant CT has the value 7.67 for a plane jet. The analysis 
did not take into account explicitly the different entrainment rates at  the two 
edges of the curved jet. 

In  this paper, the previous analysis is reframed to include the effects of 
different rates of entrainment along the inner and outer edges of the jet, although 
it is still assumed that sufficiently far from the slot the velocity profile is approxi- 
mately that of a free jet, i.e. may be adequately represented by u / U  = sech2 7. 
The effect of non-uniformity of the jet velocity profile at  the slot is also introduced, 
and the equation expressing the conservation of momentum parallel to the plate 
at the reattachment point of the jet is modified to take into account the pressure 
differences in the neighbourhood of reattachment. This gives a more realistic 
model of the flow, and this model is used to predict the length and average 
pressure of the recirculation region associated with a jet emerging at an 
angle to a flat plate. These predictions are compared with Bourque’s (1959) 
measurements. 

It is possible to formulate Prandtl’s momentum transfer arguments, which are 
briefly mentioned at the beginning of this section, in terms of simple mixing- 
length theory, and to obtain from this an expression for the mixing length which 
includes a first-order term in 1/R, where R is the local radius of curvature of the 
streamlines (Sawyer 1962). In 9 5 this is used to calculate the velocity profiles of a 
curved jet. 

2. The modified analysis 
The notation used is shown in figure 1 and definitions of symbols appear in 

the Appendix. 
The velocity profile of a plane turbulent jet is represented quite closely by 

u /U = sech2q, where q = c Y / X ,  except at  the edges of the jet where there is 
considerable intermittency of the flow. For many purposes it is physically more 
meaningful to use an entrainment parameter E rather than the jet-spread 
parameter CT. Following Head (1958)) if E is defined to be the rate of increase in 
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volume flow per unit span of the turbulent jet with downstream distance, suit- 
ably non-diniensionalized, then 

if u/ U = sech2 ((7 Y / X )  and U oc X-4, which follows from the assumption of simi- 
lar velocity profiles, since the jet momentum per unit span, J ,  is independent of 
9. Thus E = 0.130 for a plane jet. If El and E ,  are the non-dimensional rates 
of entrainment by the inner and outer edges of a curved jet, where the reference 
velocity is the maximum profile velocity U as before, then El + E, = E taking the 
velocity profile u /U = sech2y for the curved jet, and 1 - 3El/E gives a measure 
of the difference in the entrainment rates at  the two sides of the jet. In a first-order 
theory such as that set out in 9 5 ,  it is seen that (1 - 2El/E) oc b/R. 

I 

FIGURE 1. Notation used in the analysis of the flow of a jet from the top of a step. 

It is now necessary to calculate the region of initial growth of the jet from the 
slot to the point downstream of which the velocity profile is adequately described 
by u/U = sech2y, where y = Y / E X .  Over this initial region the effects of jet 
curvature are small and are neglected in the calculation which proceeds as follows. 

Consider first the development of a plane jet of initially uniform velocity 
profile. This takes place in three distinct regions (Townsend 1956, p. 172), of 
which the central region is a transition between the first, where the jet consists 
of a potential core bounded by two turbulent mixing layers, and the third, where 
the jet flow is self-preserving. For the purposes of the calculation the transition 
region is ignored, so that the jet is taken to grow as a free jet with velocity profile 
u/U = sech2y from the point where the initial mixing layers have grown suffi- 
ciently to have entrained the whole of the potential core (figure 2 ) .  

The mixing layers bounding the potential core are of the type investigated 
by Liepmann & Laufer (1947), who showed that the velocity distribution within 
such a layer is expressed as u / U  = f([), where [ = 12.OY/X and where f(6) is 

31-2 
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approximated by the error integral e-E2 dc. In  figure 2 it is shown that the 

mixing-layer velocity distribution u/U = f(5) measured by Liepmann & Laufer 
corresponds quite closely to u/ U = sech2 7, if the scales of < and 7 are chosen so 
that = 1.19, - 0-135 correspond to 7 = 0, l .  Thus, if the mixing layers bounding 

c=  
5 =  

Uniform 
velocity 
profile 

mixing layers 
coalesce Development of uniform velocity jet 

Matchilla of illitial velocitS, profile Matcliiiig of free jet to inixiiig layer profile 

FIGURE 2. Initial development of a two-dimensional jet. 

the potential core are assumed to grow at a rate given by u / U  = f ( 6 )  and 
( = 12.0 Y / X  up to thepoint where the lines 6 = 1-19 intersect on the centre-line of 
the jet, then the total velocity distribution of the two mixing layers at  this point 
is a good approximation to u / U  = sech2y. From this point, therefore, it  is 
reasonable to assume that the jet continues to grow as a free jet. The free jet 
will have a virtual origin a t  a distance X,, say, upstream of this point, where 
the mixing layers coalesce. 

Now the lines [ = 0.33 are paralIe1 to the potential core (Liepmann & Laufer), 
and so the distance between these lines is the initial thickness of the uniform 
velocity jet. Thus the distance between the points 7 = 0 and 7 = 1 a t  the station 
where the mixing layers coalesce is +( 1.19 + 0.135)/( 1.19- 0.33) = 0.770 times 
the initial thickness of the uniform jet. 

In  general, however, the velocity profile at  the slot is not completely uniform 
because of the effect of boundary layers on the walls of the contraction from the 
settling chamber to the slot. This may be accounted for by matching the measured 
velocity profile at the slot to the velocity distribution of the uniform velocity 
jet a t  some downstream station, as shown in figure 2. That is, the measured 
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velocity profile a t  the slot is matched to a velocity profile consisting of a uniform 
velocity core bounded by two mixing layers of the type investigated by Liepmanii 
& Laufer. When this is done, it is found that the actual edges of the slot corre- 
spond to the points 5 = -0.88 of the matched mixing layers. The distance 
between the points 6 = - 0-88 and 5 = 0.33 of the mixing layers is 

(0.33 + 0.88) t, = 1*21t,,, 

where t,,, measures the distance between the points 6 = 0 and = 1.  Therefore, 
if t is the actual slot thickness, the distance between the lines 6 = 0.33 of the two 
matched mixing layers in (t - 2 x 1.21tm) = ( 1  - 2.4%) t, where c = t,/t gives 
the ratio of boundary-layer thickness to slot width for the initial velocity profile 
of the jet. Since the lines 6 = 0.33 are parallel to the potential core for the initial 
development of a uniform velocity jet, the measured velocity profile at the slot 
can be matched to the velocity distribution at a downstream station of the flow 
of a uniform velocity jet of initial thickness (1 - 2.4%) t .  This matching station 
is at  a distance 13.0 t, from the origin of the uniform velocity jet, since the mixing 
layers grow at a rate given by< = 12.0 Y / X .  Also, at  the station where the mixing 
layers coalesce, the distance between the points 6 = 0.33 and 6 = 1.19 is 
+( 1 - 2.4%) t, so that this station is a distance 

12.0 x $( 1 - 2*42c)t/( 1.19 - 0.33) = (6.97 - 1 6 . 9 ~ )  t 

downstream of the origin of the uniform velocity jet. Hence the distance 
between the slot and the point where the mixing layers coalesce is given by 

or 

X, = (6.97 - 1 6 . 9 ~ )  t - 12*Otm, 

X ,  = (6.97 - 28.9~) t. 

Now, since the distance between the points7 = 0 and q = 1 at the station where 
the mixing layers coalesce is 0.770( 1 - 2 . 4 2 ~ )  t = (0.770 - 1 . 8 7 ~ )  t (since this is 
0.770 times the thickness of the uniform velocity jet as shown above), it is seen 
that the virtual origin of the fully developed jet is at a distance 

upstream of this station. 
It is also necessary to calculate the position of the dividing streamline at the 

station X ,  where the mixing layers coalesce. The dividing streamline is that which 
springs from the lower edge of the slot, and this is found to correspond to the 
point 6 = - 0.73 of the mixing layer which is matched to the measured velocity 
profile at the slot. It should be noted that this does not quite correspond to 
5 = - 0.88, the position of the edge of the slot, since a slight adjustment must be 
made to equate the volume flow in the two matched velocity distributions. Liep- 
mann & Laufer found that 6 = 0.125 is a streamline for the mixing layer flow, and 
so, since the volume flow per unit span between the line 6 = 0.125 and the dividing 
streamline is constant, at the station X ,  the dividing streamline is at  5 = tR0 where 

So = (0.770 - 1 . 8 7 ~ )  t/E ( 2 )  

or 
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Writing u / U  = +( 1-1-6) for the region near [ = 0.125, i t  is seen that 

1.27-5 .18~ 4 
or 

'RO = (( -4%) - '1. 
This corresponds to 

or 
1 - 4.08~ 
1 - 2.42c 

qno = 0.049 + 0.851J( . (3) 

Thus vR,, = 0.801 and To = tanhTRo = 0.665 if c = 0.1. For the experiments 
previously reported, i t  was found that the initial velocity profiles correspond 
to  c = 0.1 for all except the smallest slot widths, in which case c = 0.12 gives a 
inore accurate profile match. 

AIthough the above procedure may appear to be unduly complicated in view 
of gross assumptions made elsewhere, i t  is necessary to calculate the initial growth 
of the jet to a fair degree of accuracy, particularly for applications of the analysis 
to other flow configurations in which the slot width t is the only length scale. 

Using equation (3) to define the position of the reattaching streamline at 
station X = X ,  (where the co-ordinate X now measures distance along the jet 
from the virtual origin of the fully developed region), it is seen that the reattach- 
ing streamline is at the position Y = Yn for general X, where 

/l:B ud Y = /&Io E,  u d I' + const., 

and where the constant is chosen so that YR corresponds to vRo at  X = So. In  
this equation El is the entrainment parameter for the inner edge of the curved 
jet. If To = tanhrRo and T,  = tanhqR1, where 7 = yRl gives the position of the 
reattaching streamline at X = X,, the above equation leads to 

X,/X, = (( 2EJE - 1 + T,) / (  2EJE - 1 + To)}', ( 4) 

The pressure difference Ap across the jet is related to the radius of curvature 
since the jet momentum per unit span J = +pUzEX is constant along the jet. 

of the jet centre-line by the equation 

Ap = J /R .  ( 5 )  

At station X,, the thickness of the jet d,, as measured by the distance between the 
points where uI U = 0.1, is given by 

6,/2X, = 1*825E, (6)  

(7)  

and geometrically i t  is seen that 

XI - X, + X ,  = Re, 

where 6' is the angle between the jet centre-line and the pIate a t  station X,. 
In setting up the momentum equation for the flow parallel to the plate in the 

vicinity of reattachment, the station XI, representative of the jet approaching 
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reattachment, is taken to be where theinneredgeofthe jet, asgiven byu/U = 0.1, 
meets the edge of the reversed flow. The reversed flow profile is assumed to be 
identical to that part of the jet a t  X, between the reattaching streamline and 
the point where u/U = 0.1. 

This gives the step height h in terms of 19 and R 

h = R( 1 - cos 8) + $8, cos 8 ++&I( 1 - 7nl/l.S%). (8) 

The cavity length I may be taken to be 

I = R sin 4, (9) 

approximately, where q5 is the angle between the centre-line of the jet and the 
plate at the station X,, where the edge of the jet would first strike the plate if 
the jet continued to lie on a circle of radius R. Thus 

and 

5, - X ,  + X, = R4, 

h = R( 1 - cos 4 )  + 1.825 EX, cos 4. 

To allow for the effects of pressure forces near reattachment, the pressure 
distribution across the jet a t  X ,  is assumed to be of the form 

I' 
p n - p  = 1/R pu2dI' 1- 

= (J/2R) (1  + QT - +T3),  where T = tanh 7. 

Integrating this pressure distribution over the parts of the jet below and 
above the reattaching streamline at  X ,  gives the sum of the momentum and 
pressure forces to be 

and J3 + I'7"' ( p  -pa )  d I' 
-1.825ES1 

where 

If the jet divides in such a way that the sums of the momentum and pressure 
forces of the parts of the jet below and above the reattaching streamline are 
conserved (this is equivalent to treating the reattaching jet as a non-dissipative 
flow), then considering motion parallel to the plate 

(1  - 1*S25EXl/R) cos 8 = $Tl - &T; - (EX,/R)  (7R1 +log COSh7jRl 

+ $e - 1.401). (12) 
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Equations ( I ) - (  12) give Ap/ (J /h )  and Z/h as functions of hlt, if E ,  2EJE and e 
are specified. Thus 

= 1 - c o s ~ + ~ l { 1 . 8 2 5 ( 1 + c o s e ) - - ~ ~ ~ }  R = P ,  say, ( 1 3 )  
Jlh 

l /h = sinQ/P ( 1 4 )  

and 
h/t = (0-770- 1 . 8 7 ~ )  (2EIE- l+To) '  ~ R p, 

2E,/E - 1 +TI E X ,  

/( ( 
2El/E - 1 + 

Tl)' ( 2E1/E - 1 + To 
6.97 - 2 8 . 9 ~  

0.770 - 1.87~ 
where E X J R  = E8 1 -  

and 

where 0 and TI are related through the momentum balance equation ( 1 2 ) ,  and 
where c$ is given by 

To = tanh [On049 + 0-851 (( 1 - 4-08c)/( 1 - 2-42c))&], ( 1 7 )  

1 - cos e + ( E x , / R )  {i-825(1 + cos e)  - qnl> = I - cos Q 
+ ( X , / R  + Q - 0)  1.825 E cos Q. (18) 

By direct comparison with the detailed velocity and pressure distributions 
obtained for the case h/t = 5.62, it is found that the two sides of equation (12) 
differ by about 3 yo, that the predictions of the quantity of the initial reversed 
and initial downstream flow after reattachment differ from the measured values 
by about 1 yo, and that the assumptions regarding the conservation of momentum 
and pressure forces which lead to the momentum balance equation (12)  are 
accurate to 5 yo of the total jet momentum. This is a considerable improvement 
on the predictions of the original analysis, and so some confidence is placed in 
the momentum balance equation ( 1 3 )  and in the definition of the station XI. 

3. Comparison with experiment 
Figures 3 and 4 show curves of l /h and Ap/ (J /h )  as functions of h/t given by the 

modified analysis for curvature ratios 2EJE = 0.8 and 1.0 and for entrainment 
constants E = 0-08 and 0.13. For all these curves, the initial profile-matching 
parameter c has the value 0.1. 

It is seen that there is a marked improvement in the predictions of the analysis 
(in figures 3 and 4 the curves given by the previous analysis are also shown). 
For reasons set out later, i t  is expected that 2EJE = 0-83 and E = 0.13 should 
give the values for large hlt, and this is seen to be so. If E = 0.13 as would appear 
reasonable, since the total entrainment of the curved jet is expected to remain 
much the same as that of a free jet, the enhanced entrainment along the outer 
edge being balanced by a reduced entrainment along the inner edge, then the 
analysis gives best agreement with the experiments if 2EJE varies from about 
0.83 a t  hlt = 5 to a value of 0.9 a t  hlt = 15, and 0.83 for very large hlt. 

It is expected that 2E,/E will vary with hlt since it will be a function of the 
average value of b/R along the jet. If  it  is assumed that 1 - 2E1/Ecc blR, where 
b/R = &(EXo/R + EX,/R),  then it is possible to calculate the variation of 2EJE 
if the value for very large hlt is known. In the following section it is shown that 
the analysis is consistent with experiment if 2E,/E = 0.83 for very large h/t, 
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and the curves corresponding to the above calculation are also shown in figures 
3 and 4. 

A change in the value of the profile-matching parameter c from 0.10 to 0.12 
is sufficient to account for the variation in the experimental results obtained at 

FIGURE 3. Variation of llh with hlt compared with the analysis. + , in. step; 0, 1 in. 
step; +, 2 in. step; x , Bourque’s measurements; @, Miller & Comings’s dual-jet flow. 

FIGURE 4. Variation of A p / ( J / h )  with hlt compared with t>he analysis. +, 4 in. step; 
0 ,  1 in. step; +, 2 in. step; x , Bourque’s measurements; 0, Miller & Comings. 

the same value of h/t but with different step heights. This difference in results 
is entirely due to  the changes in the initial velocity profile. 

The dual-jet measurements of Miller & Comings (1960) are also shown in 
figures 3 and 4. 
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4. The limit h/t  -+ co 

(14) and (13), as h/t -+ CQ, 

From equation (15) it is seen that as h/t + co, Tl -+ 1 - 2E,/E. From equations 

} (19) 
Z/h -+ sin q5/{1- cos 8 + E8( 1+325( 1 + cos 8) - rIZ1)), 

and 

where the momentum balance equation (12) gives for the relation between Tl 
and 8, 

( 1  - 1.825XO)~o~e = ~T,-~T,3-E8(rnl+logcoshr,l+aT,2- 1*401), (20) 

Ap/ (J /h )  -+ (1 - cos 8 +Ed( 1.825( 1 + cos 0) - y R 1 ) } ,  

and where q5 is given by 

cos~-~e ( i . 825( i+cos8 )  -yn,) = (1- 1*8253$)cos$, (21) 

from equation (18). 
Bourque (1959) publishes measurements of Z/h for h/t as large as 50 from which 

it appears that Z/h + 1.20 as h/t + CO. 

Using this information, it is possible to solve equations (19)-(21) to give values 
of Tl and 8 for each choice of the entrainment constant E. The value of TI is 
very close to 0.170 for E between 0.10 and 0.13 and since Tl -+ 1 - 2El/E as 
h/t -+ co, the entrainment ratio 2E,/E takes the value 0.830 for large h/t. The value 
of Ap/ (J /h )  is also very nearly constant for E in the range of 0.10 to 0.13 and has 
a value of 0.80 for very large h/t. 

5. A first-order theory for the effects of curvature on mixing processes 
The argument put forward by Prandtl showing the mechanism by which 

curvature increases the turbulent mixing along the outer edge of a curved two- 
dimensional jet is such as can be readily formulated in terms of simple mixing- 
length theory. 

Consider the transport of a small parcel of fluid from a station at  distance 
( Y - I) from the centre line of the jet to a station Y nearer the outer edge of the 
jet. This parcel of fluid arrives with an excess velocity of magnitude 

U ( Y - Z ) - ~ ( Y )  = -z(aujaY) 

over its surroundings. If I is the mixing length then this velocity -Z(au/aY) 
may be taken to be representative of the turbulent velocity u', and correlated 
with the longitudinal velocity variation u' is a transverse velocity variation v' 
of the same order of magnitude. 

The parcel of fluid is subjected to a centrifugal force of (u( Y - Z))2/R per unit 
mass as against {u( Y))2/R of its surroundings. But the pressure gradients and 
centrifugal forces balance in the mean. Hence the parcel of fluid experiences a 
total force of {u( Y - Z)l2/R- {u( Y)l2/R = - ZZu(au/a Y ) / R  tending to move it 
further outwards. By dimensional arguments, the forces which the parcel of 
fluid normally encounters will be of the order of u'2/Z per unit mass, since the 
significant velocity scale for transverse motions will be v' (or u') rather than the 
absolute velocity u. Since ufZ/l is of order Z(au/a Y)z,  the mixing length has been 
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increased by the factor (1 - const. 2(u/R)/(aU/a Y)) ,  and Prandtl's (1925) expres- 
sion for turbulent shear becomes 

where k is an empirical constant, and where I is the mixing length for zero 
curvature. 

In  obtaining relatively simple analytic expressions for shear-layer mean- 
velocity distributions, it is much more profitable to use the eddy viscosity rather 
than the mixing-length. However, the turbulent shear equation derived above 
may be readily converted to eddy viscosity notation. Thus 

where 8 is the eddy viscosity for zero curvature. 
Using this expression for the turbulent shear, the equations of motion for curved 

two-dimensional boundary-layer flow yield similar solutions to the first order 
in b/R if b cc X, U cc V cc X-4, (p,, + ip.7) cc X-1 and blR is constant, where U ,  V 
are the mean velocity components a t  the jet centre line (the jet centre line is not 
necessarily a streamline) and po,  refer to the static pressure and mean square 
fluctuation of v at  the jet centre line. It has been assumed that the eddy viscosity 
for zero curvature is constant across the jet and has the form B = XbU, where x 
is a constant (Gortler 1942). 

The condition that b/R is constant does not, of course, apply to a curved jet 
across which there is a constant pressure difference. However, first-order solutions 
to the equations of motion may be obtained for wall jets for which b/R is main- 
tained constant (Sawyer 1962). These solutions, which apply to the outer part of 
the wall jets, are functions of (crV/U) and blR, where v is the spread parameter 
given by b = S/a  and where the transverse length scale is chosen so that 4vx = 1, 
in line with Gortler's solution for zero curvature. 

It might be expected that the velocity profile on one half of a jet with constant 
curvature would be similar to the solution for constant b/R at least for the outer 
part of the jet, if the relevant value of b/R is taken to be some average value over 
the jet up to the station considered. Thus the jet velocity profile should be like 
that obtained by placing together the two solutions for equal and opposite curva- 
ture and, say, average b/R over the jet. Continuity indicates that v V / U  should 
be equal and opposite for the two half jets. 

In  this case, a relation between the cross-velocity parameter v V / U  and the 
curvature ratio b/R may be found by dimensional arguments applied to the 
entraining layers. Thus the entrainment or inflow velocity is expected to be 
proportional to l(au/aY) where 1 is the mixing length for curved flow, that is, 
proportional to {a/ay (u/U) - +k(b/R) (u/U)} where y = Y/b, a t  the centre of the 
entraining layer. This condition leads to 

vTT/U = (0.135k- 1.47) b/R. (24) 
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The solution for the curved jet gives the entrainment ratio 

2E,/E = 1 - (0.68k - 0.91) (b/R) 

Y*/G, = 1 + (1.70k - 8.76) (b/R) 

125) 

and the change in half-jet thickness 

(26)  

to the first order in b / R ,  where Q measures the distance between the points where 
u= U a n d u = & U .  

For the case in question, if b / R  is taken as the average of the value over the 
jet and E = 0.13, then b/R = 0.065 for large hlt, since &' --f 51" as h/t -+ 00. Also 
since 2EJE + 0.830 as hit -+ co, equation ( 2 5 )  is satisfied if k = 5.29. 

7-67 YjX 

FIGURE 5. Theoretical jet velocity profiles for b/R = 0.04. 

Using this value for k, equation (26) gives Y#$, = 1 + 0.33 (b /R) .  This shows 
that the alteration in half-jet thickness is less than 14 %, which is in agreement 
with the measured velocity profiles. The rather surprising observation that the 
velocity profiles are almost identical with those of a free jet is thus shown to be 
due to the effect of a cross-flow at the locus of maximum profile velocity of the 
jet just balancing the effect of different entrainment rates at  the two sides of the 
jet. 

Equation (24) shows that V/lJ = - 0.ISbjrR for lc = 5.29, so that 

V / U  = - 0.007 

for large h/t, taking r = 7.67. Thus the angle between the streamlines and the 
locus of maximum profile velocity is of the order of 0.4". This is in agreement 
with experiment. 

Figure 5 shows jet velocity profiles calculated by the above procedure for the 
curvature ratio b/R = 0.04 and for k = 5, 6 ,  8 and 10. The curve for k = 5 is 
identical with the free-jet velocity profile, and this is found to be so for all practi- 
cal values of b/R.  
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6. The flow due to a two-dimensional jet at an angle to a flat plate 
The analysis set out above may be adapted to predict overall flow parameters 

for other situations involving two-dimensional jets, for both steady and quasi- 
steady mean flows. In what follows, the case of a jet reattaching to an inclined 
flat plate is considered. 

A P = Pa-P,  
Pa 

(S, - X ,  ) 

FIGURE 6. Notation used in the analysis of the flow of a jet at an angle to a plate. 

The flow pattern and notation used are shown in figure 6. Initially the jet 
lies approximately in the plane at  an angle a to the plate. The proximity of the 
plate to one side of the jet restricts the inflow of fluid to the jet on that side. This 
results in a pressure difference across the jet which curves the jet towards the 
plate, enhancing therestriction of the flow. The curvature of the jet increases until 
the jet strikes the plate, when a proportion of the volume flow is fed back into the 
cavity at the reattachment point. 

There is a significant difference in the configuration in that there is no longer 
a reference length equivalent to h of the previous flow pattern. Dimensional 
considerations indicate that the non-dimensional cavity length l / t  and cavity 
pressure A p / ( J / t )  are functions of a, the angle between the initial jet direction 
and the plate, the Reynolds number of the jet (Jpt)*/,u, and the shape of the initial 
jet velocity profile. If the jet Reynolds number is large, it is expected that both 
Z/t and A p / ( J / t )  should be independent of (Jpt)*/,u, although both quantities may 
depend quite critically on the shape of the initial velocity profile. 

The previous analysis remains unaltered, except that the cavity length is 
given by 

that equations (7) and (10) are now 

1 = &sin a + sin 4)) 

X I - X , + X ,  = R(a+@) and X,-X,+Xc = R(a+$) 

and that a and 8 are connected by the geometrical relation 

1 - cos a = 1 - cos e + ( E X J R )  {1+325( 1 + cos e)  - Y E , ) .  
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Thus the cavity pressure and the cavity length are given by 

(6.97 - 28 .9~)  + ______ Jlt E 

= Q ,  say, 
and Zjt = (sin cc. + sin #)I&, 

0.770 - 1.87~ ’ where E X J R  = E(a:+8) 
2EJE - 1 +To 

To = tanh (0-049 + 0.851 J( 1 - 4-08c)/( 1 - 2*42c)}, 

and l - c o s ~  = ~ - c o s # + ( S ~ / R + $ - ~ ) ~ . ~ ~ ~ C O S ~ .  

Values of l / t  and Ap/(J / t )  as functions of cc. obtained by Bourque (1959) (see 
also Bourque & Newman 1960) are shown in figures 7 and 8. In  figure 8 are pre- 
sented Bourque’s values of A p / ( J / t )  calculated using the pressure minimum on 
the plate and also using the pressure on the plate near the jet exit, which he 
considers to represent more nearly the average pressure in the cavity. In  figure 7 
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FIGURE 7. Comparison of Bourque’s measurements of Z/t with the analysis for jet at an 
angle to a plate. ---, Analysis with E = 0.130 and 2EJE = 0.638; ___ , Bourque’s 
analysis. The various symbols denoting measured points refer to different Reynolds 
nambers. 
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Bourque indicates the points where the length L of the plate used in the experi- 
ments acts as a limit to the length of the cavity. 

From figure 6it is seen that l / t  3 co as 01 -+ 64", and taking E = 0.130, the above 
equations indicate that !PI + 0.362, so that 2EJE = 0.638 for very large l/t. 

The equations have been solved for E = 0.130, 2EJE = 0.638 and c = 0.1 
and the curves for lit and Ap/(Ji t )  are shown in figures 7 and 8. There is good 
agreement with the experimental values of Zit, and the theoretical curve for 
Ap/ (J / t )  lies within the region of uncertainty existing in the experimental results. 
For comparison, theoretical curves given by Bourque using an analysis similar to 
that previously given by the author are also included. 

a 

FIGURE 8. Comparison of Bourque's measurements of Ap/ (J / t )  with the analysis for jet 
at an angle to a plate : 0, corresponding to pressure minimum on plate; x , corresponding 
to pressure near jet exit; - - - -, analysis with E = 0.130 and 2EJE = 0.638; -, 
Bourque's analysis. 

Equation (35)  is satisfied for very large l/t if Ic = 7.87, since 2EJE = 0.638 and 
(a  + 13) = 74.4" in this case, if the relevant value of b /R  is taken to be the average 
over the whole of the jet. For k = 7.87, the theoretical velocity profiles exhibit 
some asymmetry, and this is in good agreement with Bourque's measurements. 
Curves calculated assuming that 2EJE = 1 - (0.68k - 0.97) b/R, where 

blR = $ (EX,/R + EX,/R) and k = 7.87, 

are almost identical with those given by 2EJE = 0.638 for all values of a. 
The difference in the values of k deduced from the experiments in the above 

manner may be due to inadequacies of the flow models, or more directly to the 
fact that the first-order theory is not strictly applicable to jets with constant 
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curvature. Experiments with wall-jets of constant b/R indicate that the higher 
value for k more nearly represents the effects of curvature on turbulent mixing 
processes within the framework of simple mixing-length theory. However, it 
has been shown that the known difference in rates of entrainment at  the two 
edges of two-dimensional jets of constant curvature is not at  all incompatible with 
the observation of nearly symmetrical velocity profiles. 

7. Conclusions 
The modifications to the analysis given previously result in improved pre- 

dictions of length and average pressure of the recirculation region associated 
with the flow of a jet issuing parallel to a flat plate. Best agreement with experi- 
ment is obtained when the overall entrainment parameter E has the value 0.130 
(that for a plane jet) and the entrainment ratio 2EJE varies from 0.83 at h/t = 5 
to 0.9 at h/t = 15 and 0.83 for very large hlt. Comparison with detailed flow 
measurements indicates that the flow model represents the more important 
features of the flow with a fair degree of accuracy. 

The analysis gives good predictions of length and average pressure of the 
recirculation region for the flow due to a jet emerging at  an angle a to a flat plate 
if E = 0.130 and 2EJE = 0.638 for all angles d for which the jet reattaches to 
the plate. 

A first-order mixing length theory indicates that the effect of different entrain- 
ment rates at the two edges of a curved jet does not lead to jet velocity profiles 
that are substantially different from those of a plane jet, since there is an asso- 
ciated flow across the locus of maximum profile velocity as had been deduced 
from previous observations. 

Curvature is found to have a considerable effect on the entrainment properties 
of jets, and this is significant in a number of situations, for example, the growth 
of curved wall jets, the curved-jet recirculation flows associated with air cushion 
vehicles, and the velocity fields induced by curved jets. 

The author wishes to express his appreciation of many stimulating discussions 
with Dr M. R. Head, who first brought to the author’s notice the importance 
of curvature effects on entrainment properties, and also to thank the Depart- 
ment of Scientific and Industrial Research for their financial assistance. 

Appendix. List of symbols 
thickness of jet (distance between points 7 = 0, 1) 
initial jet velocity profile parameter, c = tm/t 
overall jet entrainment parameter 
entrainment parameters for inner and outer edges of curved jet 
step height 
jet momentum per unit span 
momentum per unit span of initial reversed and downstream flow 
empirical constant 
length of recirculation region, also mixing length (0 5 )  
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static pressure 
pressure difference across curved jet 
radius of curvature of jet centre line 
slot thickness 
thickness of mixing layer portion of initial jet profile 
T = t anhm 
values of T at stations X,, X, 
velocity parallel to jet centre line 
maximum jet profile velocity 
velocity perpendicular to jet centre line 
value of v at 7 = 0 
co-ordinate measuring distance parallel to jet centre line 
value of X corresponding to position where initial mixing layers coalesce 
value of X corresponding to state of jet at  reattachment 
value of X giving reattachment position 
co-ordinate measuring distance perpendicular to jet centre line 
value of Y corresponding to position or reattaching streamline 
half-jet thickness, distance between points where u / U  = 1, + 
value of Y, for zero curvature 
angle between initial jet direction and plate 
jet thickness at  station X, 
eddy viscosity 
non-dimensional Y co-ordinate, 7 = Y / E X  
value of 7 corresponding to reattaching streamline 
value of qR at stations X,, X, 
angle between jet centre-line and plate at station XI 
fluid viscosity 
non-dimensional mixing-layer co-ordinate, 5 = 12.0 Y / X  
fluid density 
empirical constant giving rate of spread of jet 
turbulent shear 
angle between jet centre line and plate at station X, 
empirical constant giving eddy viscosity, e = XbU. 
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